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The conductance of  conductive ceramics, graphite and metal suspensions in aqueous K O H  solutions 
was measured with the impedance technique using a four-electrode cell. The measurements were 
carried out  for volume fractions up to high viscosities with particles of  different sizes. A wide 
frequency range was used to investigate also the effect of  particle-surface polarisation on the con- 
ductance. The results have been analysed in terms of  the asymmetric and symmetric theories of  
Bruggeman and the G E M  theory for a wide volume-fraction range of  suspended particles. Depending 
on the suspended material, particle size and electrolyte properties, the suspensions reveal flocculation 
or chain formation. In case of  chain formation, sometimes a decrease of  the polarisation resistivity 
is found due to shortcircuiting by direct particle-particle contact. The conductivities of  the particles 
phase, calculated from measured values, are orders lower than predicted from conductivity data of  
the pure materials. This is attributed to the occurrence of  a constriction resistance and film resistance 
between the particles in the case of  flocculation or chain formation as well as to poor wetting of  the 
particles. 

1. Introduction 

Two-phase media-like suspensions can be charac- 
terized by macroscopic properties such as an effective 
conductivity. A comprehensive review on this sub- 
ject has been given by Landauer [1]. Starting from 
Maxwell's relation for the conductivity [1-4], Brugge- 
man developed an asymmetric theory [1, 3-6] for the 
conductivity of a suspension. This theory is applicable 
for a larger range of volume fractions of particles than 
Maxwell's theory, but appears to be valid only for a 
wide distribution of particle sizes. Meredith and 
Tobias [6] have developed a model, also based on 
Maxwell's equation, for particles with a narrow size 
distribution. The occurrence of chain formation or 
other direct contacts between the particles leads to a 
percolation threshold, which can be defined with 
Bruggeman's symmetric or effective-medium theory 
[1, 4, 7]. The more recent General Effective-Medium 
or GEM theory, introduced by McLachlan [8-10], 
incorporates both Bruggeman theories and gives a 
good agreement with most of the experimental results. 

Suspensions with nonconducting particles [3, 11, 12] 
show a conductivity behaviour that can be explained 
with the equation of Maxwell and the asymmetric 
theory of Bruggeman; Fricke [12] has also taken into 
account the shape of the particles. Conductivities of 
ion-conducting emulsions were measured by Meredith 
and Tobias [4, 6], Pearce [13], Bhattacharya et al. [15], 
Lagourette [16] (who also determined the frequency 
dependency), Fang et al. [17] (who found a very good 
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affirmation of Bruggeman's symmetric theory), and 
Turner [18]. In this last investigation a simple theory 
was developed based on the calculation of the distances 
between ion-conducting spheres; it agrees well with 
the experimental results for high volume fractions. 

Suspensions with conducting metallic particles in 
electrolytes, such as in fluidized-bed systems were 
investigated with d.c. by LeGoff et al. [19], Hiddleston 
et al. [20] and Kreysa [21]. Conductivities measured 
with a.c. can give information about the particle- 
surface polarisation; this technique was used by 
several workers [22-25]. Handley et al. [23] noticed a 
lower resistivity of a copper fluidized-bed at higher 
frequencies. Abdallah [25] applied the impedance- 
spectrum theory for fluidized-bed electrodes in the 
case of chain formation of the particles and gave 
extensive results for fluidized-gold-bed cells; in this 
experiment the impedance of the current collector or 
feeder is also taken into account. Calculations of 
the fluidized-bed resistivities by Fleischmann et al. 
[26, 27] based on charge transport during collisions 
scarcely agree with experimental results as found by 
Van Swaay, Beenackers and Welmers [28, 29], or by 
Sabacky and Evans [24]. 

In our study of suspension systems [30, 31], we have 
investigated the properties of conducting ceramic, 
graphite and metallic particles in aqueous KOH sol- 
utions up to high viscosity values, using the impedance 
technique with a four-electrode cell. The experimental 
results are compared with Bruggeman's symmetric 
and asymmetric theories and the GEM theory. Also 
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Table 1. Overview of  investigated material 

Suspended Particle size std, Supplier 
material 2a/#m dev./#m 

B4C 70.7 31.7 ESK, M/.inchen 
NbB 2 6.0 4.5 HCSB, Berlin 
NbC 6.7 4.2 HCSB, Berlin 
NbN 1.8 1.1 HCSB, Berlin 
TaC 1.2 0.69 Ventron, Karlsruhe 
TiN 6.8 3.6 HCSB, Berlin 
VC 3.3 1.8 HCSB, Berlin 
VN 5.5 1.1 Cerac, Milwaukee 
ZrC 1.6 1.I Ventron, Karlsruhe 

Graphite (ks 5-10) 3.2 2.0 Lonza, Basel 
Graphite (ks 25) 6.6 4.2 Lonza, Basel 
Graphite (ks 44) 8.2 6.3 Lonza, Basel 
Graphite (ks 10) 9.3 4.2 Lonza, Basel 
Graphite (ks 75) 12.1 7.5 Lonza, Basel 
Graphite (ks 75-5) 28.9 22.5 Lonza, Basel 

Zinc 2.5 2.6 
Copper 12.0 9.0 
Copper 28.5 22.6 

Janssen, Geel 
Merck, Darmstadt 
Ridel de Haan, Hannover 

the influence of flocculation and chain formation on 
the conductivity was studied. These instability aspects 
of suspensions are related to the attraction of the 
suspended particles by the Van der Waals-London 
dispersive forces and to electrostatic repulsion, as 
described in the Derjaguin-Landau-Verwey-Overbeek 
(DVLO) theory and its extensions [32, 34]. 

2. Experimental details 

This investigation has been carried out with suspen- 
sions of metal carbide, nitride and boride particles as 
well as with graphite, zinc and copper particles. Sus- 
pensions were prepared in dilute (10 -3, 10-2M KOH) 
and concentrated (2 M, 12 M KOH) solutions (Merck 
p.a.). After addition of a known amount of particles, 
the system was well mixed with a suspender under 
high-shear field conditions. Volume fractions up to 
high viscosities were prepared and studied. In the case 
of zinc in 2 M KOH, at first 1 vol % BaC particles 
(supplied by Daiichi Kichenso Japan, particle size 
1-1.5 #m) or 1 vol % Attagel 50 particles (supplied by 
MCA Zutphen NL, particle size 1 ~m) were suspended 
in the system to prevent coagulation of the zinc par- 
ticles; then a surfactant was added to inhibit corrosion 
of the zinc in the electrolyte and to improve the wet- 
ting of the particle surface; the amount of surfactant 
was proportional to the volume fraction of zinc 
(0.58ml tertiary butyl ammonium hydroxide for 
10 vol % zinc). The particle sizes with standard devi- 
ation (s.d.) were determined with a Leitz Aristomet 
microscope and Difa image-analysis apparatus. The 
results are given in Table 1. 

The impedance of the suspensions was measured as 
a function of the volume fraction particles using the 
four-electrode technique to avoid the  influence of 

polarisation effects at the electrode surfaces. The 
measuring cell consisted of a Teflon tube with an 
internal diameter of 6 mm and a length of 150 mm; on 
both ends a nylon socket with two platinum wire 
electrodes of 1 mm diameter each was mounted. These 
two wires were placed parallel with a separation of 
5 mm, perpendicular to the flow direction. To avoid 
precipitation, the suspension was pumped through the 
cell (about 20 mm/s) with a peristaltic pump. Also a 
heat exchanger, connected with a thermostat bath, 
was mounted in this circuit for temperature control at 
25 ~ C. 

Figure 1 shows a block diagram of the electric and 
flow circuits of the impedance measurement system. 
An HP-86 microcomputer controlled the measure- 
ments. A signal amplitude of 100 mV was applied with 
the Solartron-1286 potentiostat. The data were directly 
printed, and stored on a magnetic disk for later plot- 
ting. The experiments in 10-3M KOH and 10-ZM 
KOH were carried out with a Solartron-1250 fre- 
quency analyser over a frequency range of 1-64 kHz 
with repeated doubling of the frequency. For the elec- 
trolytes with ionic strength higher than 10-2 M, higher 
frequencies are required in order to scan the influence 
of the particle polarisation, and here a Solartron 1170 
frequency response analyser with a frequency range of 
1-500kHz was used. The cell was calibrated using 
literature values of the conductivities of the electrolytes 
[35]: 0.02687 f~ -~ m -l (10-3M KOH), 0.2617 f~ -1 m -~ 
(10-2M KOH) and 36.19f~-lm -~ (2M KOH). The 
particle conductivities of B 4 C and graphite were given 
by the supplier; the other values are from literature 
[36]. In Table 2 these data are summarized. In the last 
column of this table the dimensionless conductance 
K d = trd/a e is also given, with a d the particle con- 
ductivity and a c the conductivity of the electrolyte. 
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Fig. 1. Block diagram of the impedance measurement system. Thin lines: electric circuit; thick lines: flow circuit, 

3. Theory 

3.1. Suspension properties 

The interaction potential of two suspended particles 
influences the suspension stability, that is the tendency 
of a suspension to remain dispersed and resist coagu- 
lation (see Fig. 2). The kinetics of coagulation is 
described in terms of the Derjaguin-Landau-Verwey- 
Overbeek (DVLO) theory [32, 34]. Attraction between 
the particles is caused by the Van der Waals-London 

Table 2. Conductivity o f  the particles, ad, and the (dimension- 
less) particle conductance, K d = ad/ac, with tr c = the electrolyte 
conductivity 

Suspended material a a/p ~ -  1 m - l  Concentration K d 
/M K O H  

B4C 4.5 • 10 .3 10 .3 1.70 x 105 
NbB 2 3.89 10 -3 1.45 x 108 
NbC 2.27 10 -3 8.45 x 107 
NbN 1.85 10 -3 6.89 x 107 
TaC 4.55 10 -3 1.69 x l0 s 
TiN 2.5 10 -3 9.30 x 107 
VC 1.28 10 -3 4.76 x 107 
VC 1.28 2 3.5 x 104 
VN 1.67 10 -2 6.22 x 107 
VN 1.67 2 4.60 x 104 
ZrC 0.65 10 -3 2.42 x 107 

Graphite (ks 5-10) 1.04 x 10 -2 10 .3 3.90 x 105 
Graphite (ks 5-10) 1,04 x 10 -z 10 -2 3.97 x 104 
Graphite (ks 25) 1.04 x 10 -2 10 -2 3.97 • 104 
Graphite (ks 44) 1.04 x 10 -2 10 -2 3.97 x 104 
Graphite (ks 10) 1.04 x 10 -2 10 -2 3.97 x 104 
Graphite (ks 75) 1.04 x 10 -2 10 -2 3.97 x 104 
Graphite (ks 75-5) 1.04 x 10 -2 2 2.87 x 104 

Zinc 16.9 10 -3 6.28 x 107 
Zinc (1% B4C) 16.9 2 4.70 x 105 
Zinc (1% B4C + S.) 16.9 2 4.70 x 105 
Copper (M) 59.8 10 -3 2.23 x 109 
Copper (M) 59.8 10 -2 2.29 x 108 
Copper (RdH) 59.8 10 -3 2.23 x 109 

interaction energy, VA, given by 

A {  2 2 (r2 - 4"~'~ 
Va - 6 _ r2------4 + ~ + In \ ----rT-- j j  (1) 

where r = (2a + h)/a is the dimensionless distance 
between the particles centres, a the particle radius, h 
the surface-to-surface separation and A the Hamaker 
constant. At very short distances, h, this potential is 
approximated to 

Aa 
VA ~- - 12h (2) 

Deviations from the Equations 1 and 2 can occur due 
to electromagnetic retardation effects in the Van der 
Waals-London interaction [32-34]. Electrostatic 
repulsion due to electric charges on the particle sur- 
faces can prevent coagulation. For thin double layers 
(with the inverse dimensionless Debye-Hiickel dis- 
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Fig. 2. Schematic representation of the interaction energy, V, as a 
function of the dimensionless distance, r, between two particle 
centres. 
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Fig. 3. Suspension models: ~b is the volume fraction of the particles, ~b' is the volume fraction of agglomerates and t~, is the volume fraction 
of the particles in an agglomerate. 

tance �9 = a~c > 10), low surface potentials (eziO2/ 
kT < 2) and symmetrical electrolytes [32] the repul- 
sive energy VR reads 

VR = 2nSoSra~o 2 In (1 + e -h~) (3) 

where ~0 is the surface potential of  the particles, e0 the 
dielectric constant in vacuum, er the relative dielectric 
constant and ~:-~ is the Debye-Hfickel double-layer 
thickness which depends on the ionic strength accord- 
ing to [37] 

e 2 
x2 _ Z n i g  (4) 

%GkT 

with zi and n~ the charge numbers and the numbers of  
ions in the solution. Other repulsive potentials known 
to stabilize suspensions are based on steric hindrance 
[37] or on depletion [38]. These interactions are not 
considered here. 

The interaction energy resulting from the potentials 
expressed in Equations 1 and 3 in general shows a 
deep primary minimum at r~ and a secondary mini- 
mum at r2 (Fig. 2). If  the barrier Vmax is small, 
,,~ O(kT), primary coagulation can occur [39], leading 
to irreversible aggregation at a distance r~. In the case 
of a deep secondary potential, Vser and a high barrier, 
Vm,x, the system shows secondary coagulation at the 
larger particle distance r:; a shallow potential leads to 
reversible aggregation [39-41]. Reversibly aggregated 
networks easily break after shaking or pumping and a 
fluid system results (Bingham plastic behaviour). In 
the case of primary or secondary coagulation, chain 

G G 

r - - - v -  pp 

[==2:1 
Fig. 4. Electric-equivalent scheme for a suspended particle. Cp is the 
double-layer capacity; Pe is the polarisation resistivity and Pa is the 
particle resistivity. 

formation or gelation of the suspension can occur, 
see Fig. 3c, resulting in three-dimensional structures 
[39, 40, 42]. 

Hogg and Yang [41] calculated the coagulation rate 
for either primary or secondary coagulation and 
found in the latter case a weaker dependence on the 
electrolyte concentration; secondary coagulation is 
more important for larger particle sizes. This was also 
found by Zeichner and Schowalter [32, 34], who cal- 
culated stability ratios for primary and secondary 
coagulation taking into account hydrodynamic effects. 

3.2. Free particles 

The effective macroscopic conduction a~ of  a sus- 
pension containing a low volume fraction q~ of identi- 
cal spherical particles with a conductivity ad in a 
continuous phase of  conductivity ao is given by 
Maxwell's relation [1-4] 

O-m - -  Cr~ _ ~ o-d - -  ~ ( 5 )  

O" m -}- 2G a a  + 2ac 

It remains valid at higher volume fractions in a mean- 
field approximation [43]. When a large sphere is added 
to a dilute dispersion containing much smaller par- 
ticles, the disturbance of  the electric field around the 
large sphere due to the small spheres may be neglected 
and the surroundings of  this particle may then be 
considered as a new continuum. The asymmetric 
Bruggeman equation is found to hold for such a case 
[3-6]. 

(~ - am)3 = (1 - ~b) 3 (ad - O ' c )  3 (6) 
O" m O" c 

Introducing the dimensionless conductance Km = am/ 
ao for a suspension of  spherical particles with a dimen- 
sionless conductance Kd = aa/G, we can write 

- ( 7 )  
Km l / 3 ; v  - -  1) 

For nonconducting spherical (ad = 0), 
Equation 7 simplifies to 

X m  ( 8 )  

particles 

= (1  - 9) ~I~ 
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This equation was proved to be valid by De La Rue 
et al. [3] for glass beads. For highly conducting spheri- 
cal particles (tr d >> o~, am) Equation 7 becomes 

K m = (1 -- 49)-3 (9) 

3.3. Flocculated particles 

The asymmetric Bruggeman equation does not include 
the effects of flocculation or agglomerate formation 
due to the Van der Waals attraction. For particles in 
high electrolyte concentrations, the charge on the par- 
ticle surface is compensated within a very short dis- 
tance. Then the electrostatic repulsion between the 
particles is weak and flocculation can occur. The par- 
ticle volume fraction, 49, of  a nonflocculated suspen- 
sion, see Fig. 3a, is defined as 

v~ v~ 
49 - - (10) 

vo + v~ v, 

where Vd is the total particle volume, Vc the volume of 
the continuous phase and Vt the total volume. In 
the case of  coagulation, see Fig. 3b, all particles are 
assumed to be present in agglomerates with a particle 
volume fraction 49a within each agglomerate. 

49a = Fad - -  Fad ( 1 1 )  

Vao+V.~ V. 

Vad is the particle volume in the agglomerate, Vac is the 
liquid volume in the agglomerate and V. is the total 
agglomerate volume. When the electric conductivity 
within the agglomerate is high, the conduction of the 
suspension is determined only by the volume fraction 
49' of  the agglomerates. This gives, with the Equations 
10 and 11, 

NV. NV. 49 
49' - - = - -  ( 1 2 )  

Ve + NV. lit 49. 

N is the number of agglomerates and Vo. the volume of 
the continuous phase in the case of  agglomerate for- 
mation. In this model a constant value of 49. is 
assumed, independent of the volume fraction of  par- 
ticles, and because 49. is always smaller than 1, 49' will 
be larger than 49. In Equations 7 and 9, 49 must be 
replaced by 49/49.; furthermore Ks, the conductance in 
the particle phase is supposed to decrease to K. = Oa/ 
ac (the agglomerate conductance): 

Ka-Km 
= (1 - -  49/49a) ( 1 3 )  Klm/3(Ka- 1) 

and for highly conducting particles 

K m = (1 -- 49t49.)-3 (14) 

So it follows that coagulation results in an extra 
increase of  Km at equal volume fractions of  conductive 
particles. 

3.4. Chain formation 

Some suspensions can form a three-dimensional struc- 
ture (also called gel) as depicted in Fig. 3c. This gel 

formation depends on various parameters of  the sus- 
pension such as the Hamaker constant, size and shape 
distribution, the surface charge and especially elec- 
trolyte concentration [39, 40]. When electrostatic 
repulsion is not sufficient to overcome the Van der 
Waals attraction, bridging of  particles is promoted. In 
the circumstance of  flocculation, bridging is favored 
by an isotropic particle shape [40] or large particle size 
[41] and the electrostatic repulsion on the ends is 
somewhat weaker than on the side of  the chain, as 
calculated by Thomas and McCorke [44]. Also the 
particle diffusion to the chain ends is larger than to the 
middle. Hence the chain grows anisotropically and 
can form a three dimensional structure, sometimes 
even at very low volume fractions. A direct result of  
such a network can be electronic conduction over long 
distances via the particle phase of  conducting particles 
when the particle-particle contact resistance is low. A 
minimum volume fraction, called the percolation 
threshold, 49cr, is required beyond which a strong 
increase in conductivity occurs due to these three- 
dimensional networks. These suspensions are usually 
also good anti-settling systems. It was experimentally 
found [14, 16] that for aa >> ac the conductivity just 
above this threshold can be described by the scaling 
law 

a m ~ (49 - 49~r)' (15) 

The exponent (t) has been measured [14, 45] for a 
number of  dispersions and has been found to be in the 
range 1.4-2.0; the theoretical value is 2.0. This scaling 
law is only valid for a small range of volume fractions 
above the percolation threshold. 

The conductivity of suspensions in which percol- 
ation occurs may, away from the percolation threshold, 
be derived from Bruggeman's symmetric equation 
[1, 7] for spherical particles 

0"e - -  O'm O'd - -  O'm - -  0 (16) 
49coe "~ 20"m + 49dJad -~2am 

For O'c ~ od a percolation threshold occurs at 49 = 

49d = 1 - 49~ = 1/3, and two cases can be distin- 
guished: for 49 < 1 / 3 ,  o -  m ,~ a d 

Om = Oc(1 - 349) -I (17) 

and 49 > 1/3; tro ~ am 

Gm = 30-d(49 - -  1 )  ( 1 8 )  

The percolation threshold actually depends on the 
depotarisation factor and hence on the shape of the 
dispersed particles. This results in 49cr = 1/3 for a 
spherical shape and goes to zero for highly anisotropic 
ellipsoids. Percolating systems with very low percol- 
ation thresholds have been found, e.g. by Michels and 
Brokken-Zijp [46, 47]. 

As discussed by McLachlan [8-10], the two Brugge- 
man equations describe two different kinds of sus- 
pension behaviour. Neither of  these is capable of 
describing the experimentally observed percolation 
scaling law. Therefore, he developed the general 
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effective-medium theory (GEM theory), which incor- 
porates both Bruggeman's asymmetric and symmetric 
theory and the scaling law. After introduction of the 
critical volume fraction ~bor and the scaling exponent t 
as parameters, the GEM equation for the conductivity 
becomes 

a~/t+ [(1 - ~b~r)/q~,]a ~` 

(1 - ~b)(aU' - a~t) 

+ a'] '+ [(1 - I~)cr)/~crlO'lm/t = 0 (19) 

It turns out that this equation is a very suitable 
expression to describe the conductivity of  percolating 
and nonpercolating two-phase systems [9, 10]. 

3.5. Particle-surface polarisation 

The conductivity of  a suspension can be measured 
with the a.c. impedance technique. Due to the particle- 
electrolyte interface, this yields for the particle con- 
duction a complex resistance Z = Z" + j Z ' .  Hence, 
instead of  a particle conductivity (aa), a complex con- 
ductivity, 0"d(09), is to be defined. It is assumed [22] 
that this impedance is the result of  a series connection 
of  the pure particle resistivity Pd = 1/O-a and twice a 
polarisation resistivity Po = 1/ap parallel with the 
double-layer capacity Cp (see Fig. 4). The impedance 
for one particle Pd(09) is then 

2pp 2pp09/09~ (20) 
Pd(09) = Pd q" 1 + (09/090) 2 + j 1 + ((/)/(Do) 2 

where 09o = 1/pdCa. The polarisation resistivity (pp) 
of  a particle was calculated by Eardley et al. [22] and 
is given by 

~RT 1 
= (21) tiP n ~ i  o a 

where ~ is the molar gas constant, T the absolute 
temperature, n the number of electrons of  the electro- 
chemical reaction, ~ the Faraday constant, i0 the 
exchange-current density and a the particle radius. 

Two frequency limits lead to a real resistivity of the 
suspension. At very low frequencies 09 ,~ 090, say 
09 ~ 0, the surface polarisation must be taken into 
account; then the dimensionless particle conduction 
becomes 

Kdo = Pc/tim Pd(09) = PJ(Pd + 2pp) (22) 

For high frequencies co >> coo, say co ~ 0% the sur- 
face polafisation resistance can be neglected and the 
conductance becomes 

Kd~ = pdl im Pd(09) = PdPd (23) 

/(dO and Kdo~ can be found by a fit of the experimental 
data with Equation 13 or 19. The microscopic polaris- 
ation resistivity can be derived with Equations 22 and 
23, which gives 

pp = l po(1/Kdo - 1/Kd~ ) (24) 

If  the suspension behaves as an agglomerated system, 
the measured macroscopic impedance is given by 
Equation 13 with limiting values Kin0 and Km~ defined 
analogous to Equations 22 and 23. The dimensionless 
macroscopic polarisation resistivity Rmp = Pc~Prop is 
obtained from 

Rmp = l / K m 0 -  1/Km~ (25) 

The microscopic particle polarisation parameter pp 
(Equation 21) or i0 can also be calculated from the 
slope of the function Rmp = f(~b) 

dRmp _ d(1/Kmo) d(1/Km~) (26) 
d~ dq5 dq~ 

Differentiating Equation 13 results in 

d~b - ~b a 1 - ~ (Kd0 -- 1)(Kd0 + 2Km0)K~/~ 

, } 
(Kd~o -- 1)(Kd~ + 2Km| (27) 

For low volume fractions we have Km0-* 1 and 
Km~ ~ 1, and Equation 27 reduces to 

= lim 

3 1 
~Da {(Kdo 1 - 1 )K~o  (K~o~ - 1 ) / ~ o o  j 

(28) 

With Equations 22 and 23 this leads to 

dq~ .}4,=o q~a Pc(Pd --  Pc)(Pd + 2pp -- Pc) 

(29) 

Since pp oc 1/io, Equation 21, this slope is a func- 
tion of  the electrochemical exchange-current density. 

4. Results and discussion 

4.1. Measurements of  the conductance 

The impedance spectrum for different volume frac- 
tions of zinc particles, suspended in 10-3M KOH is 
given in Fig. 5 and shows half circles which shift to 
lower resistances with increasing volume fractions of  
the particles. Results obtained for a graphite ks 10 
suspension in 10-2M KOH, are seen in Fig. 6. Here 
also the half circles shift to lower resistances and 
become smaller with increasing volume fractions of  
the particles. 

In the impedance spectrum of B4C, suspended in 
10-3M KOH,  given in Fig. 7, the flattened half circles 
shift again to lower resistances; however, they become 
larger with increasing volume fractions of the par- 
ticles. The behaviour shown in Figs 5-7 is character- 
istic for all of the suspensions in 10 -3 and 10-2M 
KOH. 

The measurements in 2 M KOH,  where a frequency 
range up to 500 kHz was used, show sometimes a 
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Fig. 5. Impedance spectrum for the zinc sus- 
pension in 10-3M KOH at volume fractions, 
~b, of 4% (v), 6% (O), 10% (+), 18% (zx) and 
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Fig. 6. Impedance spectrum for the graphite 
ks 10 suspension in 10 2M KOH at volume 
fractions, tk, of: 1% (13), 2% (+), 4% (O), 
6% (zx), 8% (0) and 10% (v). 

second smaller half circle in the high frequency range, 
probably due to an increased conductance of the elec- 
trolyte at high frequencies due to the Wien effect. This 
was recently also observed by Ghowsi et al. [48]. 

From the impedance spectra, the real parts of the 
impedance at the high and low frequency limits were 
determined as function of the volume fraction of the 
particles. The results for zinc, graphite ks 10 and BaC 
suspensions are expressed as conductances (Kr,) in the 
Figs 8-10. Figures 11-13 show the Km against ~b 
curves for respectively suspensions of NbB 2, NbC and 
copper (M). With increasing volume fraction, tk, Kmoo 
increases and Kin0 is nearly constant; only the graphite 
suspensions show an increase for Kin0. 

4.2. Comparison with the Bruggeman theories 

Considering the high conductance values, Kd, of the 
particles investigated, it was expected that the experi- 
mental data could be fitted with Equation 9 or 14 for 
the asymmetric Bruggeman theory or with Equation 
18 for the Bruggeman symmetric theory. However, it 
turned out by fitting the experimental conductivities 
that the resulting conductances of the agglomerate, 
Ka, are much lower than the Kd values in Table 2. 
Therefore subsequently the Bruggeman equations for 
moderate particle conductances, Equations 7 and 13, 
were used. 

The parameters for an optimal fit of the data with 
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Fig. 7. Impedance spectrum for the B4C sus- 
pension in 10-3M KOH at volume fractions, 
if, of: 6% (D), 10% (+), 14% (O), 16% (zx), 
22% (o) and 30% (v). 
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Fig. 8. Conductances of  the zinc suspension in 10 3M KOH as 
function of the volume fraction, ~b. ( + )  Conductance in the high 
frequency limit; (0)  conductance in the low frequency limit; lines 
are fitted with the GEM theory. 
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Fig. 9. Conductances of the graphite ks 10 suspension in 10-2M 
KOH as function of the volume fraction, ~b; ( + )  conductance in the 
high frequency limit; (o)  conductance in the low frequency limit; 
lines are fitted with the GEM theory. 

the asymmetric theory, were determined with the 
least-squares method. It appears that the asymmetric 
Bruggeman theory combined with flocculation, 
Equation 13, gives a good fit for the experimental 
results of suspensions which are given in Table 3. For 
the other suspensions the calculated K~ and q~a values 
were negative or imaginary, indicating a poor agree- 
ment of the model with the experimental results. Also 
solutions with ~D a lower than the maximal value of ~b 

and with a Ka lower than Km were found, which have 
no physical meaning. From the data of the high- 
frequency limit the apparent agglomerate conductance 
(K~o) and the volume fraction in the agglomerate (~b~) 
are obtained with Equation 13. These two values were 
then used for the calculation of the agglomerate con- 
ductances for the low frequency limit, Ka0. Results of 
these calculations are depicted as lines in Fig. 10 for 
B a C .  The corresponding parameters are summarised 
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Fig. 10. Conductances of the B4C suspension in 10-3M KOH as function of the volume fraction, q~; (+) conductance in the high frequency limit; 
(O) conductance in the low frequency limit; (- - -) fit with the asymmetric Bruggeman theory; ( - - - )  fit with the symmetric Bruggeman theory; ( - - )  fit with 
the GEM theory. 
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Table 3. Parameters for the best fit with the asymmetric theory of 
Bruggeman with flocculated particles. ~ is the volume fraction of 
particles in an agglomerate, and K ~ ,  K~o are the conductances at high 
and low frequencies, respectively, the variances of var. 1 and vat. 2 

Suspended M KOH ~ K~o~ K~o var. 1 var. 2 
material 

B4C 10 -3 0.52 123 0.8 0.13 0.15 
NbBz 10 -3 0.47 64 1.7 0.12 0.21 
VC 10 -3 0.59 143 2.9 0.20 0.12 
ZrC 10 -3 0.59 18 1.7 0.07 0.09 
Graphite (ks 25) 10 -2 0.19 30 16 0.16 0.10 
Graphite (ks 75) 10 -2 0.33 82 17 0.11 0.89 

in Table 3, together with the parameters of the other 
suspensions for which also a good fit was obtained. In 
this table also the variances (var.) between measured 
and calculated points are given. Depending on the 
data sometimes a high correlation between t~a and K,~ 
was found; therefore the solutions found with the least 
squares method are not always unique, which raises 
doubt about the meaning of the values found for the 
parameters in this model. 

From the values of ~a obtained it would follow that 
these particles in suspension behave as flocculated 
particles and not as free particles. The experimentally 
found agglomerate conductances, K ~ ,  are much 
lower than the intrinsic conductivities of the particles 
in Table 2. A possible explanation of this discrepancy 
can be that between the flocculated particles a resis- 
tance, Rp., arises caused by a constriction resistance, 
Rcon, and a film resistance, Rnlm, between the floc- 
culated particles. According to Holm [49], Rp. can be 

expressed as 

Rp, = 

Ril l  m 

1 
Rcon + R~lm, /?'con = 4adrct, 

h 
O-cn~t (30) 

where r~t is the radius of the contact area of the par- 
ticles. A good approximation for the conductivities 
[50] O-con and O-~m is 

2 
O-Con 40-d r~t nrct (31) - - '  O'film = O-~ ah a 

For example, if the contact radius is 1/10 of the par- 
ticle radius (1 #m), the particle distance, h, is 0.4 nm 
for primary flocculants and in the order of 50 nm for 
secondary flocculants; and we obtain O-c~n = 0.4ad and 
O'film ~- 250-~ (primary) or O-film = 0.20-~ (secondary). 
Since this resistance is placed in series with the particle 
resistance, especially the presence of the film will attri- 
bute to a very low conductivity of an agglomerate. 
This can explain the differences between Ka and K ~ .  
Furthermore, a poor wetting of the particle surface 
can also influence O-film- 

Comparison of the particle conductances in Table 3 
shows also a much lower value for the lower frequency 
limit, Ka0. This points at a strong influence of the 
particle-surface polarisation. 

Fitting of the B4C data with the symmetric theory 
of Bruggeman, Equation 16, with the optimal value of 
Ka~ = 1000 and Ka0 = 1.5, does not result in a good 
fit (Fig. 10). For the conductance of the two zinc 
suspensions in 2 M KOH, Equation 7 for free particles 
had to be used and the calculations are based on this 

Table 4. Parameters of the GEM model for particles suspended in electrolytes of low ionic strength 

Suspended M KOH t ~c, K ~  K~o vat. 1 var. 2 
material 

B4C 10 -3 1.15 0.21 85 0.6 0.06 0.15 
NbB 2 10-3 1.15 0.17 73 3.2 0.08 0.19 
NbC 10-3 0.72 0.05 23 13.4 0.03 0.07 
NbN 10 -3 0.25 0.17 8.1 0.5 0.19 0.40 
TaC 10 -3 0.45 0.11 9.4 4.3 0.05 0.07 
TiN i0 3 0.92 0.04 65 35 0.04 0.13 
VC 10 -3 1.42 0.27 149 5.3 0.20 0.13 
VN 10 -2 0.90 0.22 49 0.5 0.16 0.22 
ZrC 10 3 1.55 0.28 49 2.5 0.06 0.08 

Graphite (ks 5-10) 10 3 1.60 0.01 3090 2960 0.03 0.04 
Graphite (ks 5-10) 10 -2 1.70 0.09 1970 1710 0.28 0.36 
Graphite (ks 25) 10 -2 1.80 0.09 830 430 0.21 0.14 
Graphite (ks 44) 10 -2 3.00 0.11 2460 1290 0.09 0.24 
Graphite (ks 10) 10 2 2.10 0.002 460 300 0.06 0.13 
Graphite (ks 75) 10 -2 1.60 0.17 480 300 0.11 0.33 

Copper (M) 10 -3 0.30 0.11 10 0.7 0.06 0.22 
Copper (M) 10 2 0.18 0.14 5.4 0.7 0.07 0.40 
Copper (RdH) 10 -3 0.38 0.08 12 0.8 0.11 0.35 
Zinc 10 3 3.55 0.003 3580 230 0.13 0.60 
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Table 5. Parameters of  the GEM model for particles suspended in electrolytes with high ionic strength 

Suspendend material M KOH t dpcr K ~  K~o var. 1 var. 2 

VC 2 2.10 0.40 3 • 10 -3 1 x 10 -3 0.01 0.26 
VN 2 0.18 0.20 2.6 0.7 0.02 0,20 

Graphite (ks 5-75) 2 0.5 0.04 5.7 0.8 0.06 0.77 

Zinc (1% B4C ) 2 0.20 0.33 5.5 0.5 0.12 0.37 
Zinc (1% B4C + S.) 2 1.20 0.44 59 7.0 0.04 0.65 
Zinc (1% At.) 2 0.50 0.07 3.5 0.8 0.03 0.02 
Zinc (1% At.) 12 0.40 0.18 11 0.8 0.06 0.07 
Zinc (1% At. + 0.5M ZnO) 12 1.10 0.013 31 16 0.10 0.25 

equation. So it is assumed that addition of B4C par- 
ticles to this suspension prevents flocculation. An 
addition of a surfactant results here in a higher value 
of Ka0 and a lower polarisation resistance of the par- 
ticles, i.e. an increase of the exchange-current density 
i0. 

4.3. Comparison with the GEM theory 

Next the optimal fit for the experimental conduc- 
tances with the GEM model, Equation 19, was deter- 
mined, using the same procedure as before. The 
calculated parameters of Equation 19 are given in 
Table 4 for the suspensions at low ionic strength and 
in Table 5 for the suspensions at high ionic strength. 
Comparing the variances for the GEM theory and the 
Bruggeman theory, Table 3 shows in general a lower 
value for the GEM model and thus a better fit of the 
experimental data. An example of a fit with the GEM 

theory compared with the Bruggeman fit is seen in 
Fig. 10. 

Results of the calculations with the GEM theory are 
depicted as full lines in Figs 8-13 for, successively, the 
suspensions of zinc, graphite ks 10, BnC , NbB2, NbC 
and copper (M) in 10 -3 M KOH. A result at high ionic 
strength is presented in Fig. 14 for a suspension of 
zinc in 2M KOH with addition of 1% B4C and a 
surfactant. 

Most of the conductance data of the suspensions 
agree very well with calculations with the GEM 
model. As in the case of the Bruggeman fit, a large 
difference between Kd and Kj~ is found, which again 
can be explained by the film resistance between the 
particles and the poor wetting of the particle surface. 

The NbC data (Fig. 12) indicate a slower increase 
with the volume fraction at higher q5 which infuences 
the fit with the GEM equation. This effect was also 
found for the TiN suspension. The conductance at the 
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Fig. 11. Conductances of the NbB 2 suspension in 10 3M KOH as 
function of the volume fraction, 4'- ( + )  Conductance in the high 
frequency limit; (o) conductance in the low frequency limit. Lines 
are calculated with the GEM theory. 

q9 

Fig. 12. Conductances of the NbC suspension in 10-3M KOH as 
function of the volume fraction, ~b. (+ )  Conductance in the high 
frequency limit; (O) conductance in the low frequency limit. Lines 
are calculated with the GEM theory. 
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Fig. 13. Conductances of the copper (M) suspension in 10-3M 
KOH as function of the volume fraction, 4). ( + )  Conductance in the 
high frequency limit; (o) conductance in the low frequency limit. 
Lines are calculated with the GEM theory. 

low-frequency limit of the zinc suspensions in 2M 
KOH, with 1% B4C and surfactant, as given in 
Fig. 14, shows also a remarkable behaviour with 
increasing volume fraction: first a decrease and then 
an increase is noticed. It appears that at low volume 
fractions of the particles, polarisation resistance domi- 
nates; however, above a certain volume fraction the 
percolation threshold is reached which determines the 
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Fig. 15. Microscope picture of the zinc suspension of about 0.5 vol % 
in 10-3M KOH. 

conductivity. In this case, neither the Bruggeman nor 
the GEM theory gave a good fit. The addition of 
surfactant shows an increase of qScr and of both K~ 
values compared with the zinc suspension without 
surfactant (Table 4). The increase of qSc,, i.e. of a 
higher volume fraction where percolation occurs, 
indicates the disperging action of the surfactant. 
Furthermore, it appears that addition of the surfac- 
tant results in a better wetting of the particle surface 
and therefore of higher K~ values. 

It is expected that at low ~b~r values percolation 
(chain formation) occurs, which results in a high con- 
ductance at the both frequency limits, as follows from 
K~ in Table 4. Furthermore a high K~ value results in 
an increase of t. Figure 15 shows a microscopic view 
of the zinc suspension. As can be noticed, the zinc 
particles with an arbitrary shape, are partially floc- 
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K m  4 
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Fig. 14. Conductances of the zinc ( +  1% B4C + surfactant) 
suspension in 2 M KOH as function of the volume fraction, qS. 
(+ )  Conductance in the high frequency limit; (0) conductance in 
the low frequency limit. Lines are calculated with the GEM theory. 

culated and no chain formation is observed. Yet with 
the GEM theory a value of ~bcr = 0.003 was found, 
which points at chain formation at very low values of 
the volume fraction. The graphite ks 5-10 suspension 
in 10-3M KOH shows a somewhat increased value of 
qSc, = 0.01. The microscopical view of Fig. 16 indi- 

Fig. 16. Microscope picture of the graphite ks 5 suspension of about 
0.5vo1% in 10-3M KOH. 
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Fig. 17. Polarisation resistivity of the B4C suspension as function of the volume fraction. 
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cates however chain formation of graphite particles 
with arbitrary shape; therefore a lower percolation 
threshold q~cr was expected. It is also noticed that the 
percolation threshold, as found for both the zinc and 
graphite suspension, is lower than the true value 
because other pictures like Fig. 15 and Fig. 16 show at 
lower volume fraction negligible chain formation. A 
certain deviation can occur by correlation effects 
between the parameters. This casts doubt on the 
precise interpretation of the fitted values of q~cr as a 
percolation threshold. 

Increasing ionic strength for the graphite ks 5-10, 
copper, VC, VN and zinc suspensions shows a decrease 
of K~ and an increase of q~cr (Table 4 and Table 5). 

Most suspensions in electrolytes with high ionic 
strength as given in Table 5, show K~0 values lower 
than 1. Only the zinc suspension in 12 M KOH 4- 0.5 M 
ZnO shows a higher K~0, which indicates a decrease of 
the polarisation resistance due to the addition of the 
electrochemically active ZnO. 

The results of VC in this table show a value lower 
than 1 for both K~. This was also found for NbC, ZrC 
and graphite ks 5 in 2 M KOH; the data of these last 
measurements are not included in Table 5. These 
lower conductances of suspensions in 2 M KOH are 
probably caused by an increased surface tension for a 
higher KOH concentration [51], resulting in a poorer 
wetting of the particle surface. The higher conduc- 
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Fig. 18. Polarisation resistivity of graphite suspensions as function of the volume fraction�9 (+)  ks 5, (zx) ks 25, (O) ks 44 and (A) ks 75. 
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tances for the larger graphite particles (ks 75-5) can be 
explained by a possibly better wetting of particles with 
increased radii. The increased conductances for a zinc 
suspension in 2 M KOH, when a surfactant is added, 
supports this assumption. Poor wetting of the sus- 
pended particles can, like the film resistance, explain 
the lower K ~  value compared with Ka as given in 
Table 2. 

4.4. Particle-surface polarisation 

From experimental data of K ~  and K~0 the polaris- 
ation resistivity, Rmp, is obtained as a function of ~b; 
this is given in Fig. 17 for the B a C  suspension. The 
polarisation resistivity for the ZrC suspension shows a 
maximum and is lower than for the BnC suspension. 
For the graphite suspensions in 2 M KOH the polar- 
isation resistivity, as function of the volume fraction, 
is given in Fig. 18 for different particle sizes (ks 5, 
ks 25, ks 44 and ks 75); at higher volume fractions 
the polarisation resistivity, Rp, becomes lower. An 
increase in the value (~max (where Rrn p is maximal) with 
the particle size is noticed for the graphite suspensions 
(except graphite ks 10); this can be due to a smaller 
polarisation resistivity with increasing particle size, 
cf Equation 21. The sharp decrease after a maximum 
of Rom can be attributed to short-circuiting of the 
microscopic polarisation resistances by chain forma- 

tion of the particles. It is assumed, that chain formation 
becomes dominating at the maximum of the function 
Rmp = f(~b). This effect of short-circuiting of the 
double-layer capacity was also noticed for the suspen- 
sion of ZrC, both zinc suspensions in 2 M KOH with 
1% B 4 C  and the zinc suspension with 1% Attagel in 
12M KOH + 0.5M ZnO at much higher volume 
fractions. The volume fractions, q5 . . . .  at the maxi- 
mum of Rmp, are given in Table 6. 

No maximum in the Rmp against tk curves was found 
for the NbC, TaC, TiN, zinc (10 3M KOH) and 
copper (RdH) suspensions, in spite of a low qbc, value. 
These results reveal, however, in most cases a K~o 
value greater than 1. Therefore, it must be concluded 
that chain formation not always leads to a decrease of 
the polarisation resistivity. In Table 6 also the values 
of q~a and q~cr, as found with the two models used 
before, are compared with ~max" These three values 
differ, but a similar trend between the three values can 
be noticed, which indicates that ~b,, found with the 
GEM theory, is physically meaningful. 

The slope of the dimensionless polarisation par- 
ameter, dRmp/d~b , is calculated from the slope of the 
function Rp = f(~b) and is presented in Table 6. The 
microscopic polarisation parameters can be deter- 
mined with Equations 21 and 29 if we assume that at 
very low volume fractions flocculation or chain for- 
mation is negligible and therefore Equation 29 holds. 

Table 6. Polarisation parameters obtained from experimental data and compared with 49 ~ and C~c r 

Suspended material M KOH (~cr q~ Cm~x ( dRmp 

\ d e )  

B4C l0 -3 0.21 0.52 - 9.5 

NbB  2 10 -3 0.17 0.17 - 11.5 

N b C  10 -3 0.05 - - 10.7 

N b N  10 -3 0.17 - - 16.7 

T a C  10 -3 0.11 - - 2.3 

T i N  10 -3 0.04 - - 1.7 

VC 10 -3 0.27 56 - 4.0 

VC 2 0.40 - - 32.8 

V N  10 2 0.22 - - 22.1 

V N  2 0.18 - - 4.0 

ZrC 10 -3 0.28 0.59 0.38 4.7 

G r a p h i t e  (ks 5-10)  10 -3 0.01 - - - 

G r a p h i t e  (ks 5-10) 10 2 0.09 - 0.018 39.0 

G r a p h i t e  (ks 25) 10 2 0.09 0,19 0.026 31,8 

G r a p h i t e  (ks 44) 10 -2 0.11 - 0.036 22.3 

Graph i t e  (ks 10) 10 -2 0.002 - 0.021 40.8 

Graph i t e  (ks 75) 10 -2 0.17 0.33 0.066 17.8 

Graph i t e  (ks 5-75)  2 0.04 - - 11.0 

C o p p e r  (M) 10 3 0.11 - 18.2 

Coppe r  (M) 10 -2 0.14 - - 22.7 

Coppe r  ( R d H )  10 3 0.08 - - 33.3 

Zinc I0 3 0.003 - - 11.1 

Zinc (1% B4C ) 2 0.33 - 0.22 14.2 

Zinc (1% BaC q- S.) 2 0.44 - 0.24 6.5 

Zinc (1% At.)  2 0.07 - 5.2 

Zinc (1% At.)  12 0 . I8  - 5.0 

Zinc (1% At.  + 0 .5M Z n O )  12 0.013 0.06 14.2 
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5. Conclusions References 

The impedance  technique is very useful for determin-  
at ion o f  the conduct ivi ty  of  two-phase  systems such as 
slurry and suspension electrodes as well as fluidized- 
bed electrodes. Results obta ined for  a number  o f  
suspensions with conduct ing particles show that  the 
conduct ivi ty strongly depends on the f requency and it 
is argued that  the low and high frequency limits o f  the 
conductivi ty are meaningful  pa ramete rs  of  the two- 
phase system. The  suspension systems reveal  a large 
difference between the high and low frequency con-  
ductance,  which points  to a considerable surface 
polar isat ion contr ibut ion.  This implies that  a rb i t ra ry  
chosen frquencies for  these measurements  as seen in 
the l i terature will include an u n k n o w n  part icle-surface 
polar isat ion contr ibut ion and are therefore less reli- 
able conduct ivi ty data.  

The aspects o f  agg lomera t ion  or chain fo rmat ion  
for suspensions are related to the a t t rac t ion o f  the 
suspended particles by the Van der W a a l s - L o n d o n  
dispersive forces and to electrostatic repulsion. Dif-  
ferent models  for suspension systems are discussed. 

Fits o f  the Bruggeman model  for  flocculated par-  
ticles can give a good  agreement  with experimental  
da ta  but  the paramete rs  found are not  always physi- 
cally meaningful ,  The  symmetr ic  Bruggeman  theory,  
for  the case o f  chain format ion ,  gives no good  agree- 
ment  with the experiments.  The  G E M  model  gives 
generally a good  fit for  the exper imental  results and 
shows in general a lower var iance with exper imenta l  
data  than  other  models.  

In the case o f  a fit with the Bruggeman model ,  but  
also with the G E M  model ,  the measured  particle con- 
ductance is much  lower than  tha t  predicted f rom 
part icle-conductivi ty data.  An extra resistance contri-  
but ion can be found in the large contac t  resistance 
between the particles due to constr ict ion and film 
resistances; also a poor  wetting of  the particles increases 
this resistance. 

Microscope pho tographs  indicate a higher percol- 
a t ion threshold for  zinc and  graphi te  than  found  
with the G E M  theory;  however ,  a c o m m o n  trend o f  
this threshold with the m a x i m u m  of  the polar isa t ion 
resistivity is found.  The measured  decrease of  the 
polar isat ion resistivity after the m a x i m u m  reveals the 
occurrence o f  percolat ion,  which m a y  result in short-  
circuiting o f  the microscopic  polar isat ion resistances. 
These p h e n o m e n a  indicate chain fo rmat ion  o f  the par-  
ticles. F o r  graphi te  suspensions this effect shifts to 
higher vo lume fract ions with increasing particle size. 

With  increase o f  ionic strength the conductance  of  
the suspension decreases and the percola t ion thres- 
hold increases. 
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